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Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Readings

Required:

▶ Lecture notes: chapter 5

Optional:

▶ Fine, K. (2017). Truthmaker semantics. A Companion to
the Philosophy of Language, 556-577.

2 / 30



Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Plan

1. Truthmaking and satisfaction

2. Exact and Inexact Truthmaking

3. Lewis argument

3 / 30



Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Outline

1. Truthmaking and satisfaction

2. Exact and Inexact Truthmaking

3. Lewis argument

4 / 30



Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Truthmaking and satisfaction
A model is a set of facts F , which comes with a part-whole
structure ⊑ on F which is reflexive, antisymmetric and transitive
(a partial order).

F is closed under least upper bounds with respect to ⊔
(typically called fusion).
{p} |=e p and {p} |=

ep if p is atomic.

f |=e ¬ϕ iff f |=
eϕ

f |=

e¬ϕ iff f |=e ϕ

f |=e ϕ ∧ ψ iff ∃g, h : f = g ⊔ h, g |=e ϕ, h |=e ψ

f

|=

eϕ ∧ ψ iff f

|=

eϕ or f |=

eψ

f |=e ϕ ∨ ψ iff f |=e ϕ or f |=e ψ

f |=

eϕ ∨ ψ iff ∃g, h : f = g ⊔ h, g |=

eϕ, h

|=

eψ

One can prove by induction that f ∈ T (ϕ) iff f |=e ϕ.
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Truthmaking and satisfaction (2)

This is the version used in the lecture notes (to ease your work,
we adopt this for the exercises and the exam!)

A model is a triple M = ⟨S,≤, I⟩

▶ S is a set of states.

▶ ≤ is a partial order such that any two s, s′ ∈ S have a lub
s ⊔ s′.

▶ I = (I+, I−) is a pair of functions S × P → {0, 1} satisfying
⊔-closure:

If I+(s, p) = 1 and I+(s′, p) = 1, then I+(s ⊔ s′, p) = 1

If I−(s, p) = 1 and I−(s′, p) = 1, then I−(s ⊔ s′, p) = 1.

6 / 30



Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Semantic Clauses
We define positive and negative truthmaking

s |=+ p iff I+(s, p) = 1
s |=− p iff I−(s, p) = 1.

s |=+ ¬ϕ iff s |=− ϕ
s |=− ¬ϕ iff s |=+ ϕ

s |=+ ϕ ∧ ψ iff there are s′, s′′ ∈ S with s′ ⊔ s′′ = s and
s′ |=+ ϕ and s′′ |=+ ψ.
s |=− ϕ ∧ ψ iff s |=− ϕ or s |=− ψ or there are s′, s′′ ∈ S with
s′ ⊔ s′′ = s and s′ |=− ϕ and s′′ |=− ψ.

s |=+ ϕ ∨ ψ iff s |=+ ϕ or s |=+ ψ or there are s′, s′′ ∈ S with
s′ ⊔ s′′ = s and s′ |=+ ϕ and s′′ |=+ ψ.
s |=− ϕ ∨ ψ iff there are s′, s′′ ∈ S with s′ ⊔ s′′ = s and
s′ |=− ϕ and s′′ |=− ψ.
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Logical Consequence

Γ |= ϕ iff all models M and states s, if s |=+ γ for all γ ∈ Γ, then
s |=+ ϕ.

8 / 30



Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

An important difference
Compare the clauses of conjunction

f |=e ϕ ∧ ψ iff ∃g, h : f = g ⊔ h, g |=e ϕ, h |=e ψ

f

|=

eϕ ∧ ψ iff f

|=

eϕ or f |=

eψ

s |=+ ϕ ∧ ψ iff there are s′, s′′ ∈ S with s′ ⊔ s′′ = s and s′ |=+ ϕ
and s′′ |=+ ψ.
s |=− ϕ ∧ ψ iff s |=− ϕ or s |=− ψ or there are s′, s′′ ∈ S with
s′ ⊔ s′′ = s and s′ |=− ϕ and s′′ |=− ψ.

The former corresponds to an exclusive version, while the
latter to an inclusive version.

A verifier for ϕ ∨ ψ should also be a verifier for ϕ ∧ ψ. A falsifier
for ϕ ∧ ψ should also be a falsifier for ϕ ∨ ψ.

f

|=

eϕ ∧ ψ iff f

|=

eϕ or f |=

eψ or f |=

eϕ ∧ ψ
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Truthmaking and satisfaction Exact and Inexact Truthmaking Lewis argument

Examples

p, q |= p

p ∧ q ̸|= p

(p ∨ q) ∧ (p ∨ r) ̸|= p ∨ (q ∧ r)

But (p ∧ q) ∨ (p ∧ r) |= p ∧ (q ∨ r) [exercise]
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Closure

One can show that formulas are closed under the fusion
operator ⊔.

For all formulas ϕ, all truthmaker models M , and states s and
s′:

▶ If s |=+ ϕ and s′ |=+ ϕ, then s ⊔ s′ |=+ ϕ.

▶ If s |=− ϕ and s′ |=− ϕ, then s ⊔ s′ |=− ϕ.
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Exact vs Minimal Truthmaker
An exact truthmaker does not have to be minimal.

s minimally verifies ϕ if s |=+ ϕ and for any s′ ⊑ s s.t. s′ |=+ ϕ,
then s′ = s.

In words, if s exactly verifies ϕ and no proper subpart of s
exactly verifies ϕ.

Consider p ‘It is cold’ and p ∨ (p ∧ q) ‘It is cold or (it is cold and it
rains).’

With the previous notation, we have that T (p) = {{p}}, while
T (p ∨ (p ∧ q) = {{p}, {p, q}}

Thinking in terms of states, consider the state p and q as the
sole verifiers of p and q. p would be the minimal verifier of both
p and p ∨ (p ∧ q), even though the latter is also exactly verified
by p ⊔ q.
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Subject-Matter

Fine (2017) proposes an interesting notion of subject matter of
a formula.

The subject matter of ϕ is the fusion s1 ⊔ s2 ⊔ . . . of its
verifiers.

σ(ϕ) =
∨
(|ϕ|+)

Subject matters are states, rather than a relation between
worlds (as in an intensional treatment).

σ(p ∧ q) = σ(p ∨ q)
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Exact Truthmaking

{p} |=e p and {p} |=e p if p is atomic.

f |=e ¬ϕ iff f

|=

eϕ

f

|=

e¬ϕ iff f |=e ϕ

f |=e ϕ ∧ ψ iff ∃g, h : f = g ⊔ h, g |=e ϕ, h |=e ψ

f

|=

eϕ ∧ ψ iff f

|=

eϕ or f |=

eψ

f |=e ϕ ∨ ψ iff f |=e ϕ or f |=e ψ

f

|=

eϕ ∨ ψ iff ∃g, h : f = g ⊔ h, g |=e ϕ, h |=e ψ
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Inexact Truthmaking

To capture tautological entailment, we need a notion of inexact
truthmaking, T ∗(ϕ).

f ∈ T ∗(ϕ) iff ∃g ⊆ f : g ∈ T (ϕ) [Van Fraassen style]

f |=i ϕ iff ∃g ⊑ f : g |=e ϕ [new style]

ϕ |=i ψ iff (for all models): T ∗(ϕ) ⊆ T ∗(ψ)
or equivalently
ϕ |=i ψ iff (for all models): ∀f, if f |=i ϕ, then f |=i ψ.

ϕ tautologically entails ψ iff ϕ |=i ψ
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Inexact truthmaking and satisfaction

f |=i p iff p ∈ f f |=

ip iff p ∈ f , if p atomic.

f |=i ¬ϕ iff f

|=

iϕ

f

|=

i¬ϕ iff f |=i ϕ

f |=i ϕ ∧ ψ iff f |=i ϕ and f |=i ψ

f

|=

iϕ ∧ ψ iff f

|=

iϕ or f |=

iψ

f |=i ϕ ∨ ψ iff f |=i ϕ or f |=i ψ

f |=

iϕ ∨ ψ iff f |=

iϕ and f |=

iψ

Γ |= ϕ iff (i)∀f ∈ F , if ∀γ ∈ Γ : f |=i γ, then f |=i ϕ, and
(ii)∀f ∈ F , if f ̸|=i ϕ, then ∃γ ∈ Γ : f ̸|=i γ
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Defining worlds

A fact f is maximal iff for every p ∈ SOA : p ∈ f or p ∈ f

A fact f is consistent iff for no p ∈ SOA : p ∈ f and p ∈ f

A fact f is a possible world iff f is maximal and
consistent

A fact f is an impossible world iff f is maximal but not
consistent
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A note on hyperintesionality

Think of worlds W as sets of maximally consistent facts:
{p,¬q, r, s,¬t, . . . }

[[ϕ]] =df {w ∈W : ∃f ∈ T (ϕ) : f ⊆ w}

Notice: although [[p ∨ (p ∧ q)]] = [[p]],
still T (p ∨ (p ∧ q)) = {{p, q}} ≠ {{p}} = T (p)

⇒ T (ϕ) is more fine-grained than [[ϕ]]

T ∗(ϕ) = {g ∈ F | ∃f ∈ T (ϕ) : f ⊆ g}

Notice: although [[p ∨ ¬p]] = [[q ∨ ¬q]],
still T ∗(p ∨ ¬p) ̸= T ∗(q ∨ ¬q)

⇒ even T ∗(ϕ) is more fine-grained than [[ϕ]]
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A note on negation
Do we have false makers? So far, we assumed that each state
of affairs has exactly one negative counterpart.

We can relax this condition by assuming a primitive two-place
relation ⊥ between states of affairs.

What constraints on ⊥?

- Symmetry: a⊥b⇒ b⊥a

- Irreflexivity: a ̸⊥ a

- More?

Based on ⊥ between states of affairs, we can derive ⊥ between
facts

f⊥g iff ∃a ∈ f, b ∈ g : a⊥b

Check: ⊥ (between facts) is symmetric and monotonic (i.e.,
f⊥g and g ⊆ h⇒ f⊥h), but it need not be irreflexive.
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A note on negation

What about negative propositions?

P = {f ∈ F : ∀g ∈ P : f⊥g}

(An alternative route is to define a notion of negative fact, and
negative proposition based on the latter).
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Lewis Argument
1. p ∧ ¬p

2. p (∧ elimination)

3. ¬p (∧ elimination)

4. p ∨ q (∨ introduction)

5. q (disjunctive syllogism)

What to give up?

▶ ∧ elimination

▶ ∨ introduction

▶ disjunctive syllogism

▶ transitivity of entailment
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Disjunctive Syllogism

We have seen that tautological entailment rejects Disjunctive
Syllogism.

Van Fraassen result: provide a truthmaker semantics for
tautological entailment.

ϕ |=T ψ iff T ∗(ϕ) ⊆ T ∗(ψ) iff ∀f ∈ T (ϕ) : ∃g ∈ T (ψ) : g ⊆
f
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∨ introduction

Moving from p to p ∨ q adds an additional constant not present
in the premise.

Parry (1932) formalized a system where ϕ analytically entails
ψ only if all propositional variables in ψ are contained in ϕ

ϕ |=a ψ iff
(i) ϕ classicaly entails ψ and
(ii) ∀g ∈ T (ψ) : ∃f ∈ T (ϕ) : g ⊆ f
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∨ introduction

Possible problems:

- We lose some important meta-inferences

ϕ |=a ψ ̸⇒ ¬ψ |=a ¬ϕ

- It is a quite intuitive rule.

- We would need to reject sentences as the one below.

All husbands are spouses.
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∧ elimination

This is a quite unnatural move.

But it can be implemented easily:

ϕ |= ψ iff T (ϕ) ⊆ T (ψ)
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Transitivity of entailment

1. p ∧ ¬p

2. p (∧ elimination)

3. ¬p (∧ elimination)

4. p ∨ q (∨ introduction)

5. q (disjunctive syllogism)

(1) entails (2) entails (4)
(1) entails (3)
(3) and (4) entail (5)

Can we have that (1) does not entail (5)?
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Transitivity of entailment
First attempt: we exclude all arguments with contradictory
premises or tautologous conclusions.

However, we would like to have that p ∧ ¬p entails ¬p.

We can accept the latter because it is a substitution instance of
a valid argument without a contradictory premise (change ¬p to
q)

Smiley (1959), Tennant (1994): An argument is valid iff it is a
substitution instance of an argument that

1. is classically valid

2. does not have a contradictory premise

3. does not have a tautologous conclusion.
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Transitivity of entailment

However, do we want to accept (p ∧ ¬p) ∨ r |= q ∨ r ?

This analysis can be (partly) captured using truthmakers as
follows:

ϕ |=t ψ ⇐⇒ ∀f ∈ T@(ϕ), ∃g ∈ T (ψ) such that g ⊆ f,

where

T@(ϕ) =

{
{f ∈ T (ϕ) : cons(f)}, if ∃f ∈ T (ϕ) such that cons(f),
T (ϕ), otherwise.
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